Ang mga ugat ng parisukat equation 2x ^ 2-4x + 5 = 0 ay alpha (a) at beta (b). (a) Ipakita na 2a ^ 3 = 3a-10 (b) Hanapin ang parisukat equation na may ugat 2a / b at 2b / a?

Ang mga ugat ng parisukat equation 2x ^ 2-4x + 5 = 0 ay alpha (a) at beta (b). (a) Ipakita na 2a ^ 3 = 3a-10 (b) Hanapin ang parisukat equation na may ugat 2a / b at 2b / a?
Anonim

Sagot:

Tingnan sa ibaba.

Paliwanag:

Una, hanapin ang mga ugat ng:

# 2x ^ 2-4x + 5 = 0 #

Gamit ang parisukat na formula:

#x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 #

# x = (4 + -sqrt (-24)) / 4 #

# x = (4 + -2isqrt (6)) / 4 = (2 + -isqrt (6)) / 2 #

# alpha = (2 + isqrt (6)) / 2 #

# beta = (2-isqrt (6)) / 2 #

a)

# 2a ^ 3 = 3a-10 #

# 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2) -10 #

# 2 (2 + isqrt (6)) / 2) ^ 3 = (2 (isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6)

# = 2 * (- 28 + 6isqrt (6)) / 8 #

#color (asul) (= (- 14 + 3isqrt (6)) / 2) #

# 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 #

# = (6 + 3isqrt (6) -20) / 2color (asul) (= (- 14 + 3isqrt (6)) / 2) #

b)

# 2 * a / b = ((2 + isqrt (6)) / 2) / ((2-isqrt (6)) / 2) = (2 + isqrt (6)) / (2-isqrt (6) #

# 2 * b / a = ((2-isqrt (6)) / 2) / ((2 + isqrt (6)) / 2) = (2-isqrt (6)) / (2 + isqrt (6) #

Kung ang mga ito ay ang mga ugat sa isang parisukat pagkatapos:

(2-isqrt (6)) / (2-isqrt (6))) (x- (2-isqrt (6)) / (2 + isqrt (6)

#a (x ^ 2 + 4 / 5x + 4) #

Saan # bba # ay multiplier.

Hindi ko isinama ang ehersisyo dito. Mahaba at mahaba.