Ang isang pagtatantya ay mayroong 1010 bituin sa Milky Way na kalawakan, at mayroong 1010 na kalawakan sa uniberso. Sa pag-aakala na ang bilang ng mga bituin sa Milky Way ay ang average na bilang, gaano karaming mga bituin ang nasa uniberso?
10 ^ 20 Ipinapalagay ko na ang iyong 1010 ay nangangahulugang 10 ^ 10. Kung gayon ang bilang ng mga bituin ay 10 ^ 10 * 10 ^ 10 = 10 ^ 20.
Sinusukat mo ang anggulo ng paralaks para sa isang bituin na 0.1 arcseconds. Ano ang distansya sa bituin na ito?
10 parsecs = 32.8 light years = 2.06 X 10 ^ 6 AU. Ang formula para sa layo ay d = 1 / (paralaks anggulo sa radian) AU. Dito, para sa 1 segundo paralaks anggulo, ang distansya ay 1 parsec. Kaya, para sa 0.1 segundo, ito ay 10 parsecs = 10 X 206364.8 AU. Halos, 62900 AU = 1 light year (ly). Kaya, ang layo na ito # = 2062648/62900 = 32.79 ly. Kung ang anggular na pagsukat ay 3-sd .100 segundo. ang sagot ay 32.8 ly .. Sa kasong ito, ang katumpakan para sa anggular na pagsukat ay hanggang sa 0.001 sec. Ang sagot ay ibinigay para sa katumpakan na ito. Mahalaga ito, kapag nag-convert ka, mula sa isang yunit patungo sa isa pa
Ang Star A ay may paralaks na 0.04 segundo ng arko. Ang Star B ay may paralaks na 0.02 segundo ng arc. Aling bituin ang mas malayo mula sa araw? Ano ang distansya sa star A mula sa araw, sa parsec? salamat?
Ang Star B ay mas malayo at ang distansya nito mula sa Sun ay 50 parsecs o 163 light years. Ang relasyon sa pagitan ng distansya ng bituin at anggulo ng paralaks nito ay ibinibigay ng d = 1 / p, kung saan ang distansya d ay sinusukat sa mga parsec (katumbas ng 3.26 light years) at ang paralaks anggulo p ay sinusukat sa mga arcseconds. Kaya Star A ay nasa distansya ng 1 / 0.04 o 25 parsec, habang ang Star B ay sa distansya ng 1 / 0.02 o 50 parsec. Kaya Star B ay mas malayo at ang distansya nito mula sa Sun ay 50 parsecs o 163 light years.